

Energy Aware Computing Power Consumption of Clusters Control and Optimization

PDP2014, Feb 12-14, Turin

Luigi Brochard (<u>luigi.brochard@fr.ibm.com</u>) Raj Panda (<u>panda@us.ibm.com</u>) <u>Francois Thomas</u> (<u>ft@fr.ibm.com</u>)

ethink High Performance Computing. ata-intensive. Energy-efficient. Intuitive.

The Power Problem

A 1000 node cluster with 2 x86 sockets, 8 cores, 2.7 Ghz consumes **340 kW (Linpack)** not including cooling In Europe (0.15€ per Kwh) 441K€ per year In US (0.10\$ per Kwh) US\$ 295K per year In Asia (0.20\$ per Kwh) US\$ 590K per year

Several ways to reduce power

Use better cooling (Direct Water Cooling) Reduce power distribution losses Choose processors with high Flops/Watt Use power and energy aware software tools Tune the applications

Several ways to reduce power

Data center (PUE reduction)

- Use better cooling (Direct Water Cooling)
- Reduce power distribution losses

Hardware, microprocessor technologies

• Choose processors with high Flops/Watt

Software

- Use power and energy aware software tools
- Tune the applications

Several ways to reduce power

Before your RFP starts

- Use better cooling (Direct Water Cooling)
- Reduce power distribution losses

Outcome of your RFP

• Choose processors with high Flops/Watt

During the lifetime of you supercomputer

- Use power and energy aware software tools
- Tune the applications

Power and Performance of JS22 and HS21

JS22 4.0 GHz							HS21 2.8 GHz						
Application	Aver	age Pov	wer (wa	tts)			Application	Ave	rage Po	wer (wa	tts)		
	Total	CPU	DIMM	Other	CPI	GBS		Total	CPU	DIMM	Other	CPI	GBS
416.gamess	289	87	14	102	1,3	0,0	416.gamess	366	106	15	62	0,6	0,0
433.milc	306	76	51	103	6,8	16,3	433.milc	321	64	30	66	9,8	6,2
435.gromacs	292	87	15	102	1,5	0,7	435.gromacs	363	102	17	63	0,6	1,2
437.leslie3d	326	85	50	105	2,6	16,5	437.leslie3d	328	68	30	67	8,6	6,3
444.namd	296	89	14	104	1,4	0,3	444.namd	356	100	15	64	0,7	0,2
454.calculix	301	91	18	103	1,0	1,9	454.calculix	379	106	20	64	0,6	2,2
459.GemsFDTD	315	80	49	106	5,1	15,8	459.GemsFDTD	323	66	29	66	9,5	6,1
481.wrf	311	84	39	103	1,5	12,7	481.wrf	329	69	29	66	5,2	6,1
Idle	212	48	14	102			idle	210	24	15	66		

Systems	Processors	Nominal Frequency	Memory
JS22 2 Sockets 2 cores	IBM Power6	4 GHz	4 x 4GB, 667 MHz DDR2
HS21 2 Sockets 4 cores	Intel Harpertown	2.86 GHz	8 x 2GB, 667 MHz DDR2

"CPU" includes N processor cores,L1 cache + NEST (memory, fabric, L2 and L3 controllers,..)

"Other" includes, L2 cache, Nova chip, IO chips, VRM losses, etc.

Power and Performance of iDataplex dx360 M4

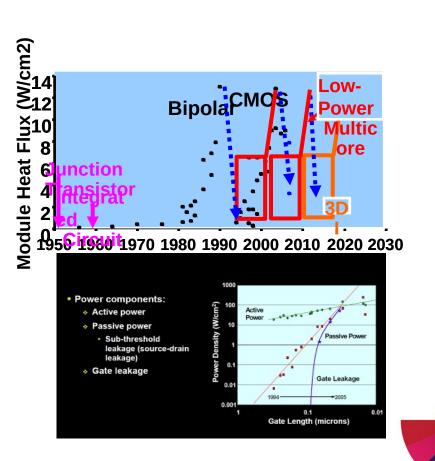
ldataplex dx360 M4 – dual Sandy Bridge 2.7 Ghz (SSE42 binaries)						ldataplex dx360 M4 – dual Sandy Bridge 2.7 Ghz (AVX binaries)							
Application	Ave	erage Pov	/er (watts)) Perf metrics		Application	Ave	Average Power (watts)			Perf metrics		
	Total	Core	DIMM	Other	CPI	GBS		Total	Core	DIMM	Other	CPI	GBS
416.gamess	275	100	5	71	0.9	0.3	416.gamess	275	100	5	71	0.9	0.3
433.milc	330	99	55	77	2.3	68.6	433.milc	327	97	55	78	2.4	68.5
435.gromacs	260	95	5	65	1.2	5.0	435.gromacs	264	97	5	65	1.3	4.9
437.leslie3d	332	99	57	78	3.1	65.0	437.leslie3d	335	101	56	77	4.5	65.0
444.namd	252	92	5	64	0.9	1.0	444.namd	253	90	5	68	1.0	1.0
454.calculix	274	96	8	74	0.8	11.6	454.calculix	281	100	8	73	0.9	12.5
459.GemsFDTD	320	95	57	73	2.4	63.1	459.GemsFDTD	320	95	57	73	2.4	62.5
481.wrf	330	98	53	82	1.8	65.1	481.wrf	332	101	53	77	2.2	65.2
idle	85	6	5	68			idle	85	6	5	68		00.2
							laio			-			
	Systems		Р	rocesso	rs		Nominal	Mem	orv				
	-)						Frequency		- ,				
	iDatanley (dx360M	1 lı	ntel San	dy Brida	2	2.7 GHz	8 x 1	6GB 1	600 MHz			
iDataplex dx360M4 2 Sockets 8 cores		T 11	ntel Sandy Bridge			2.7 012	1 × 0	.00D, 1	000 10112				
	2 SOCKED	0.00103											

Power and Performance comparison of Nehalem and Sandy Bridge systems (3-4 years apart)

_	_	_	_	11/
			_	101
=		IT	=	
=		= 7		

Application	Instance	s/hour	Energy/instance		
	NHM	SNB	NHM	SNB	
416.gamess	35	83	24	12	
433.milc	69	145	12	8	
435.gromacs	91	242	9	4	
437.leslie3d	51	100	17	12	
444.namd	75	159	11	6	
454.calculix	94	223	9	4	
459.GemsFDTD	40	84	21	14	
481.wrf	72	145	12	8	

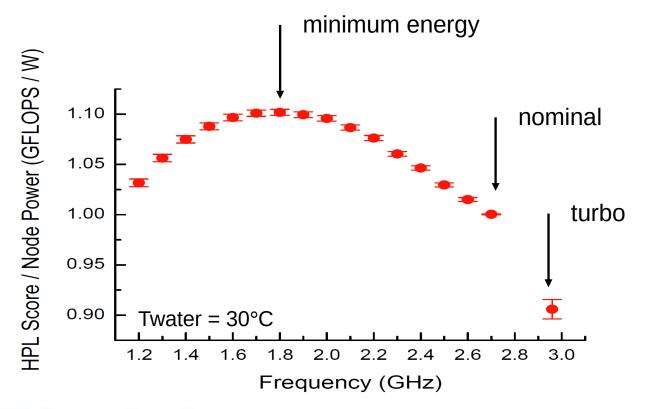
Throughput per core is conserved Energy per job is halved (not exactly true for memory intensive jobs)



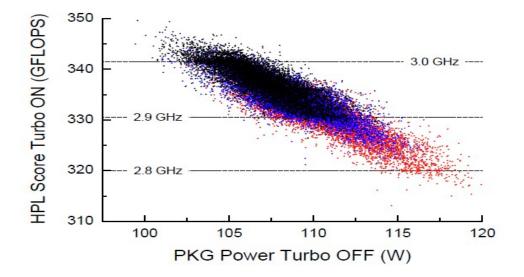
The Power Equation

Power=capacitance*voltage^2*frequency Power~capacitance*frequency^3

- Active power problem
 - Control frequency of active nodes
- Passive power problem
 - Minimize idle nodes power

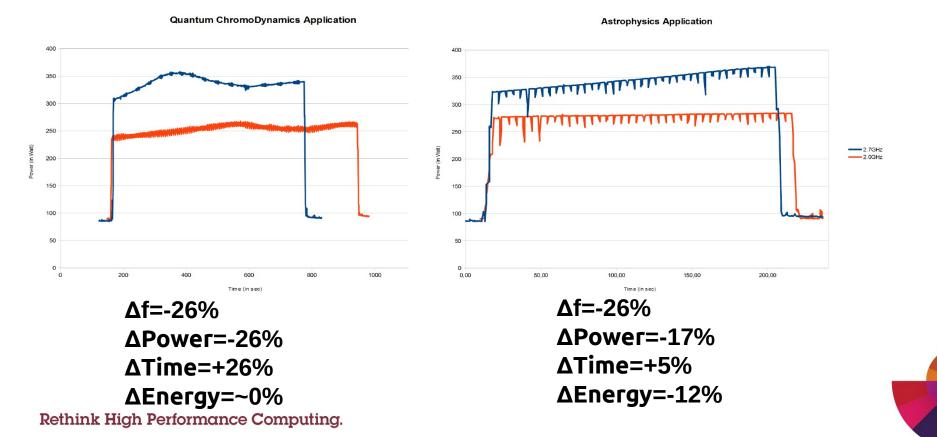

Is it worth using Turbo?

Energy Efficiency IBM iDataPlex DWC dx360 M4



IBM System x iDataPlex Direct Water Cooled dx360 M4

2x Intel SB-EP 2.7 GHz 130 W. 8x 4 GB.



Ingmar Meijer, 2012

What happens when you just lower the frequency ?

Rethink High Performance Computing.

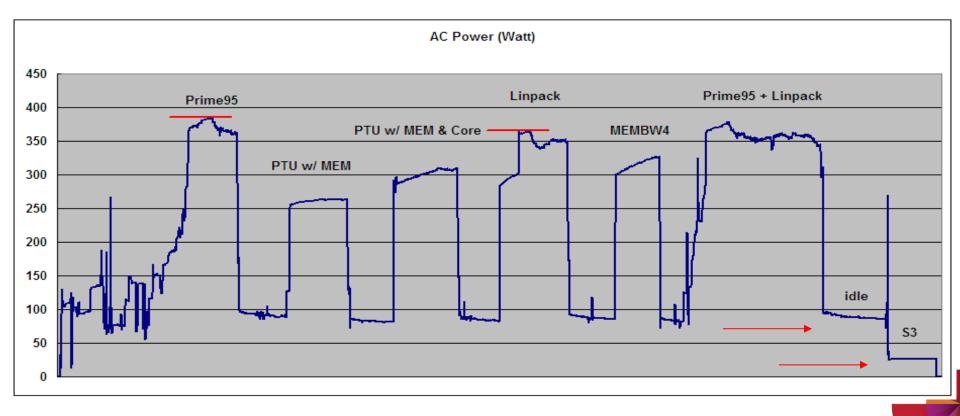
How do we find the performance/power trade-off ?

Monitor the application (hpm counters, power) Done transparently by the job scheduler

Build a performance and a power model Taking into account the processors/nodes And the application's characteristics

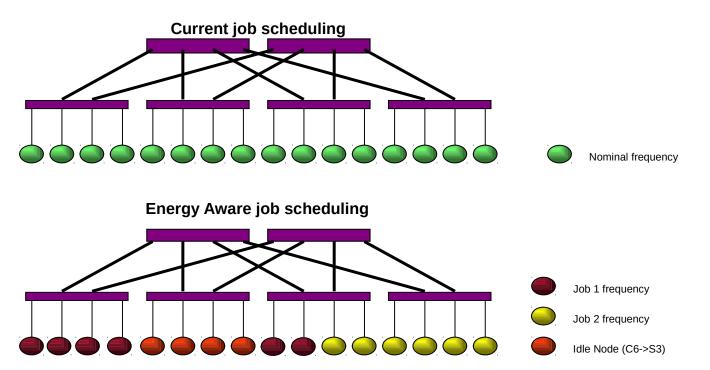
Introduce energy policies METS : Minimize Energy To Solution MTTS : Minimize Time To Solution MxTS : Minimize x to Solution Application clock scaling

Reduce power of inactive nodes


• by C- or S-states

Reduce power of active nodes

- by P-state / CPUfreq
- by memory throttling


Active and Idle power measurements on dx360m4

IBM

Energy Aware Scheduling (EAS)

Before each job is submitted, change the state/frequency of the corresponding set of nodes to match a given energy policy defined by the Sys Admin

LSF-EAS energy policies available

Minimize Energy To Solution

subject to a maximum performance degradation of X%

Minimize Time To Solution

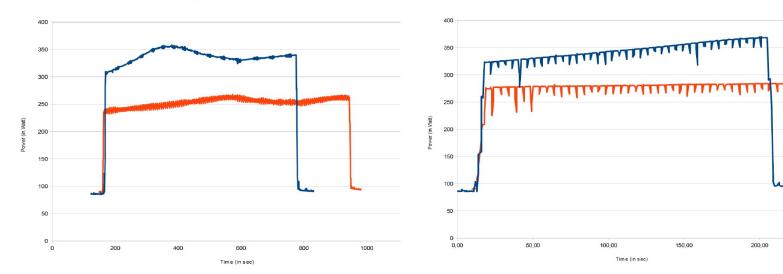
- frequency higher than default
- if default is not nominal
- subject to minimum performance improvement with clock speed

Set Frequency

(privileged)user specified

Site provided policy

• Sysadmin provides an executable to set frequency based on site local criteria



Example: what happens when you just change frequency

2.7GHz

2.0GHz

Quantum ChromoDynamics Application

 $\Delta f=-26\%$ $\Delta Power=-17\%$ $\Delta Time=+5\%$ $\Delta Energy=-12\%$

Astrophysics Application

Rethink High Performance Computing.

 $\Delta Power=-26\%$

ΔTime=+26%

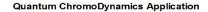
 Δ Energy=~0%

Δf=-26%

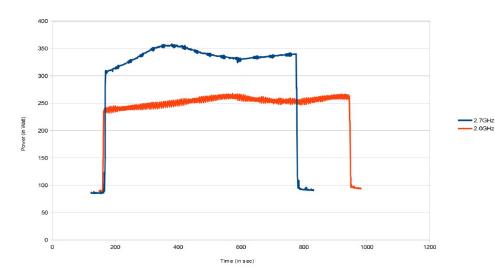
Example: how to submit a job first time

```
#!/bin/bash
# @ job_name = test
# @ account_no = 99999
# @ class = parallel
# @ job_type = MPICH
# @ network.MPI = sn_all,,US
# @ total_tasks = 128
# @ node = 8
# @ output = $(jobid)_output
# @ error = $(jobid)_error
# @ initialdir = /bench/gpfs/fs1/users/fthomas/lleas/Astrophysics
# @ node_usage = not_shared
# @ energy_policy_tag = Astro
# @ energy_output = energy.dat
# @ queue
```

. ~/.bashrc


Example: how to submit a job with a policy

```
#!/bin/bash
# @ job name = test
# @ account_no =
# @ class = parallel
# @ job_type = MPICH
# @ network.MPI = sn_all,,US
# @ total tasks =
# @ node =
# @ output = $(jobid)_output
# @ error = $(jobid)_error
# @ initialdir = /bench/gpfs/fs1/users/fthomas/lleas/Astrophysics
# @ node_usage = not_shared
 @ energy_policy_tag = Astro
#
# @ energy_output = energy.dat
# @ max_perf_decrease_allowed =
# @ queue
 ~/.bashrc
```



Example: what happens with max perf degrad policy=5%

Astrophysics Application

50.0 10.00 150.00 20.00 Time (in sec)

T = 2.6 GHz $\Delta Power = -5\%$ $\Delta Time = +2\%$ $\Delta Energy = -3\%$ f=2.0 GHz ΔPower=-17% ΔTime=+5% ΔEnergy=-12%

Savings example

1000 node cluster, 0.15€ per KWh

Linpack power consumption per year = 442K€

Inactive nodes

With 80% workload activity and nodes in S3 half of the idle time (10% of overall time) Savings per year = 24.5 K \in

Active nodes

With a 3% performance degradation threshold, about 8% power saved (cf examples) Savings per year = 20.4 K \in

Total savings: 45K€, ~10%

3 PFlops SuperMUC system at LRZ

Fastest Computer in Europe (June 2012)

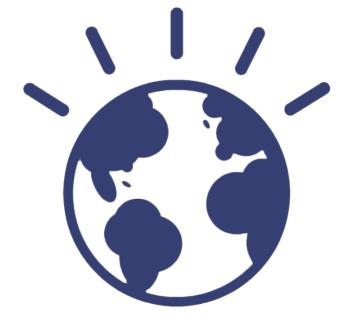
9324 Nodes with 2 Intel Sandy Bridge EP CPUs 3 PetaFLOP/s Peak Performance Infiniband FDR10 Interconnect Large File Space for multiple purpose 10 PetaByte File Space based on IBM GPFS

Innovative Technology for Energy Effective Computing

Hot Water Cooling Energy Aware Scheduling

Most Energy Efficient high End HPC System

PUE 1.1


Total Power consumption over 5 years to be reduced by ~ 37% from 27.6 M€ to 17.4 M€ ISC'14 : "A Case Study of Energy Aware Scheduling on SuperMUC", Axel Auweter.

Rethink High Performance Computing.

Thank you !

High Performance Computing For a Smarter Planet

